
/ AD—A076 335 COLORADO UNIV BOULDER DEPT OF COMPUTER StIENCE FIG 912 N
A SOfTWARE LIFECYCLE METHODOLOGY AND TOOL SUPPORT.(U) ‘N.
APR 79 L ii OSTERWEIL DAAG2 9—78—6—0046

UNCLASSIFIED CU—CS—t5U—79 AR O—150 74.5—M NL

END
D A T E

FILMED

—79
DEC

ilEo / 6O’7c46’-fr\

@REVEV
UNIVERSITY OF COLORADO

0

• DEPARTMENT OF COMPUTER SCIENCE

Technica1Repc~t

. •

D D C
I

_ _ _ _ _ _ _

I~~~~~ 8~~~
• I DI~~BIBUTION STATEMENT A u u~I Acciu’.d kz public r.l.a~~D~trlbuttcn Unlimited

. ...Lt... O~ &~


~~~~ 
V .—~~—- -.—~~- -— —V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

~
— -

~r~ ~~~~~

—

~~~~~~~~
--

~~~~~~~~~~~~~~~~~~
—- 

. . . .~~~~~~~~~~~~~~~~~ . ~~~,,. .

@LEVEV

/

~~~~~~SOFTWARE~~IFECY~~~
_J

Leon ~±.i~~terweii7’Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado 80309

9.) . . ——--~~~~~~~~~~~~~~
(
~ 3—7

~~~~
TERIM

~~ E~~~AL41J
L

~~~~~~
1
’ V

CONTRACT AAG29-78-G-~Q46 /

Approved for publ ic release; ~~~- .
•

Distribution Unlimited D D Cr~r~nnrir~
I~1N0 ~

8 1
~

~‘i~~a iJQ1 UU151~JL6UuL~7—’Y-’’ rf ~ 2 B /~~
j

‘— I i
‘I ~~~_—

~~~~~-
-

~~
-- V -~--—-~-— _ _ _



~~~

—-- —
- ~~~~~~

~~~~~~~~

I
1 . 1

j
i..

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS. 

V

1 1

We acknowledge U.S. Army Research support
under contract no. DAAG29-78—G-0046 and
National Science Foundation support under
grant no. MCS77-02l94 .

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ • V V V~V -~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V V

-. ~~~~~~~~~~~~~~~~~~
.

~~~~~~~~~ .. .~~~~~~~~~~ ~~~~~~~~ •, V~V~~~~ V • 
~~~~~~~~~~~~~~~~~~~~~~~~

$~~CuRITV CLA SSIFICATION OF T HIS PAGE ~~~~~~ Data Ent.f•~~

REPORT DOCUMENTATION PAGE 1
F. REPORT NUMBER ~2. . OVT ACC LS~ IOH

~°t
3. RECIPIENI”S C A T A L O G NUMBER

CU-CS-154-79
—________________________

V

4. TITLE (on d SubtItl.) 5. TYPE OF REPORT S PERIOD COV ERED

“A Software Lifecycle Methodology and Tool—p

Support” V
4 PERFORMING ORG. REPORT NUMBER

1. ALj TNO R (a) S. CONTRA C T OR G RANT NUMBER(a)

DMG29-78-G-0O46
V

Leon J. Osterweil t1CS77-02194 (NSF)
V I. PERFORMING ORGANIZATION NAM E ANO ADD RESS SO PROGRAM ELEMENT. PROJ ECT . TASK

V
•

AREA S WORK UNIT NUMB ERS
Dept . of Computer Science .

V
University of Colorado at Boulder
Boulder , Colorado 80309

IS . CONTROLLING OFFICE N A M E AND ADDRESS 12. REPORT OAT S

U. ~~~ . Art~.y ~~~ear~~t i ~) t f i ce April , 1979
~~~~ ~~‘fj ~~ B.~x 1~~fl.1 53 .  WUM•ER OF PAGES

Rese .~ Tr i a~~’ e i’~ r$ • NC ~~• I C Q  15
14. MONItORING AGENCY NAME I AODRESS(U dSU. ,.nS i,aau Controlling OUSca) IS. SECURITY CLASS. (OS ibSa r•port)

V ___________________________
ISa. OEC LAS S IFICAT IOPi/ QOWNGRA OING

SC H E D U L E  —~

_____________________________________________________ 
NA

IS. DISTRIBUTION STATEMENT (of (Ala kaposI)

Appruve~ for pub1i~ re].ea3e; distri~~ tior u n i i r n i t~ d. V

57. DISTRIBUTION S TA T E M E N T  (.1 A. abiSrac t ,nt .r.d Sn BlocS 20. II 1S15a,ont ftc ., R.porE )

NA

IS. SUPPL EMENTARY NOTES

C V i  ~~~~~ in  t n t  ~; report t& r~— n~ 1 ~ . 
~ . r soi t a:~ an o ff i  ci al

Depart~.~ rit 01 t he  A~~y posi t ion , ur.~ e~~; io:~ i~ nated by other authorized
V 5 k E Y  W ORDS (CoøSSnu. on ,.v.r.. aid. II n.c.... ,~ ond SdonUlp’ A,. b’ocS nua,b.,)

V Testing; Verification , Data Flow Analysis; Software Tools

30. •STRACT (ConUnw. on r.v.,.. add. SI n.c...a,5. ond Sd.ntdSy by l ’tnck ntonb.r)

his paper descri bes a system of techniques and tools for aiding in the
development and maintenance of software. Improved verification techniques V

are applied throughout the entire process and management visibility is greatly
enhanced. The paper discusses the critical need for improving upon past and
present methodology. It presents a proposal for a new production methodology, V

a verification methodology, and the system architecture for a family of support
tools.~~~

V 
~~~~~~~ ~473 EDITION OF I NOV IS IS OSSOLETE ur.c r~ ;~~j rie~

SECUR ITY CLASSI F ICATION OF Ts iS PAGE (NSt.n D.~. EnIsrs~~

I L . _____________________ — - _~~~~~~~
. . ~~~~~~~~~~~~ ~~~~~~~~~~~~~ . ~~~~~~~~~~~~~

-
_
~
_

~~ VVV
—~~~~~ -. ~~~~~~~~~~ ~~~~ V V —

V VVVVV~ V ~~~~~~~ • VV ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —V.---... . . ~~~~~~~~~~

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ -

~

V
——1

SECURITY CLASSIFICATION OF THIS PAGLIW5*w Des. Eas.r.4) -

SECURITY CLASSIFICATION OF THIS PAG((WPI.n Data Entarod)

~~~~~ — . - 
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - i V V ~~VtV ~~~~ _ V•~ ,__~~~
.

—
~~~

- — - -. ... ~

- — - r”~ — 
—~~~~ 

.
~
-.

ABSTRACT

This paper describes a system of techniques and tools for aid-
ing in the development and maintenance of software. Improved verifica-

tion techniques are appl ied throughout the entire process and management
visibility Is greatly enhanced. The paper discusses the critical need
for improving upon past and present methodology . It presents a pro-
posal for a new production methodology , a veri fication methodology , j 

~and the system architecture for a family of support tools.

ACCESSION for

NTIS White SectIon ~
DDC Buff Section 

~UNANNOUNCED V

JUSTIFICAT ION ______________

By -

MSTR~B~1l~N/AVMtAM1Ifl ~DES
Di~t. and/or SPECIAL

1V



-V -~~

-1-

INTRODUCTION

There has been growing interest recently in the problem of pro-

ducing high-quality software at reasonable cost [1-6]. The cost of
producing programs has been observed to range up~~o and sometimes be-

yond $200 per line [7]. In spite of these costs, embarrass i ng and

V 
occasionally disastrous errors and shortcomings have been found in such V 

-

code. Peopl e actively involved in software development have become all
too accus tomed to a var iet~’ of problems , including

cost/schedule overruns,
poor visibility into development status,

unreliability ,
maintenance difficulties ,
inconclus ive verifi ca tion, and
inadequate or nonexistent documentation

These problems have received a lot of attention during the last
few years, and the quest for improved , modern software practices has
been generally a search for ways to elimi nate or at least alleviate

these probl ems wherever possible. V

As a consequence of intense multidiscipl inary investigation of

these and related probl ems, some basic findings have emerged [8-li].
The key findings are that software is an intangibl e product and that it
is critically important that its production be carefully managed . Un-

fortunately software management is currently more of an art than an exact
science. The reasons are not hard to find . First , softwa re is not
tangible; hence much management science does not apply directly. Second,

there are few if any basic software development pri ncipl es and discipl ines.

In view of the growi ng magnitude of U.S. software activities

(currently estimated at $lO-20 billion per year [12,13]), it is not sur-
prising that considerabl e effort is being spent on discovering workable

software development and management principles. An important step In

this direction is the realization that software production is an activity

that properly takes place in phases, and that it should be managed as

such. The phased approach to software development is now widely accepted

as a basis for Improving project cost effectiveness through improved

I ~~ - 
— . ,-- -~~~~~~ -- V— -— - -- —. --i—— V 

--— ~~~~~—rn-~~~~~~~~ —-~~~~—



-
~

----- --— ~~~~~ — - ~---~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~ ~~~~~~~~~~~~~~~

-2-

visibility and control .

I I REQUIRE- 
_________

[PRELIM- I
_______ _________

~~~~~~ i— ~ MENTS - 

~ INARY 1- ~CODE
U~~LI~ J IANALYSIS I DESIGN I I L.3 L I~

Figure 1. Phased approach to software development.

Figure 1 illustrates typical names and the usual ordering of

some of these phases. Generally, the first phase, requirements analysis ,

should result in the production of a requirements document specifying

the end user ’s needs and wishes for the software. The next phase, pre-

liminary des ign, should be the identification and analysis of the func-
tional capabilities needed to achieve the requirements . The next phase,

detail design , shoul d be the derivation and definition of specifi c data

aggregates and algorithmic modules capabl e of effecting these functional
V capabilities. The final step , coding, is then the process of impl ementing

these specifications as computer source code.

Many discussions of the phased approach also include documenta-
tion, testing and maintenance as sequential phases of software production.

It is our opinion that documentation and testing should not be considered

phases , but rather pervasive activities throughout the development process.
The next section explores this idea more fully. Maintenance also shoul d
not be considered a sequential phase, but rather an activity continuing
throughout the useful life of the software.

Maintenance has become a catchall term for all activities occurring
after the code is declared operational . In practice these activities are
quite diverse, encompassing such things as (1) correcting coding errors,
(2) repairi ng design flaws (and impacted code), and (3) upgrading of basic
capabil ities (resulting in redesign and recoding). It now becomes clear

wf~y 50-60% of total software lifecycle costs are ascribed to maintenance
[14,15]. Figure 2 illustrates this notion of maintenance as the iterative
al teration and correction of requirements , design , and code.

We believe that the greatest benefits of this phased conceptual iza-

tion of software development and maintenance will not be obtained until

i~i - - V V ~~~~~~~~~~~~~~~~~ .~~~~~~ - . . -

~V V~ V
~

V V
~~~~~~~~~~~~~~~~~~~~~~~~

•
~~ 

-- - -  - - -
~

~~~~~~ ~~~~~~~ ~.LU I  -JIIIJI PVIAM~ W~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

~~~~~~~~~~~~~~~~~~ _V~V~

-3-

LREQUIREMENIS1 PRELIMINARY 
_ _ _ _ _ _ _  

~~CODE

MAINTENANcE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UPGRADE
CAPABILITIES

Figure 2. The maintenance process.

the conceptualization is supported by adequate tools and automation
[16-18]. Specifically, what appear to be needed are tools and techniques

to (1) facilitate the transition from one development phase to the next
and (2) determine that the transitions have been made correctly. This
paper proposes an integrated tool-supported methodology being designed
to address effectively both of these objectives.

LIFE CYCLE VERIFICATION

Careful management throughout the life cycle is critical to the
success of any software project. This careful management must be based
upon adequate visibility into the development (and hence maintenance)

process. The phased approach dictates that milestones be inserted into
the process as monitoring points. By itsel f, however, it does not
specify how this monitoring is to be done. Cl early the tantalizingly
intangibl e nature of the evolving software product is the probl em.

V Thus the driving philosophy behind our approach is that project
related products and information be made as visible and tangible as
possible. It is important to observe that such things as reports,
suninarles , and analyses must be considered key project information.

V Indeed , such information may be more useful in improving project visi-
—

bility and manageability than more obvious and mundane items, such as
listings and design diagrams . For this reason, much emphasi s is
placed upon techniques for producing useful reports , summaries, and
analyses at all phases of the development (and hence, maintenance) cycle.

L I -

—V .--—-- ~~~~
V•

~~~~~~~~~~~~ V~~~~~~~~ -VV - - - 

-
~~~~~ 

- — V

-4-

Ideal ly, these reports , suninaries, and analyses will be automatically

drawn from rigorous representations of requi rements , design , and code.
Thus important emphasis is al so pl aced upon rigor , formal i ty, and machine

readabil i ty of all project source materials.

If this is done, then ;thorough, objective , compl ete reports on
project sta tus can be eas ily and automatica l ly generated at cr iti cal
points in the life cycle. These reports would represent both the status

of the project and inferences drawn from source materials. Verification

of the soundness of efforts in a given development phase is then obtain-

abl e by a compar i son of the i nferences drawn from one phase to status
suninaries and inferences drawn from the previous phase.

CONSISTENCY CONSISTENCY
CONSISTENCY CONSIST ENCY

_ _ _ _ _ _ _

Hill ___

V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

REQUIREMENTS PRELIMINARY INCREMENTAL CODE
VERIFICATION DESIGN DETAILED DESIGN VER IFICATION

VERifICATION VERIFICATION

Figure 3. Lifecycle vericicatlon.

- V 
Figure 3 illustrates this idea and embodies the important principl e

that verification and testing are activities that must occur during every
phase of the development and maintenance cycles. These incremental veri-
fication steps are exactly what are needed to assure that the software
product is developing satisfactorily. Their purpose is to provide man-
agement (and project personnel ) with the perceptions and insight needed
to prevent drift, poor coordination , and misdirection.

Thus , for example , in Figure 3 we see that a verification of re-
quirements back to the end user Is dictated . This woul d be supported by
the creation of reports based upon the requirements as specified . The

-~~~~~ ~~~~~—~~~~~~~~~~~~~ - — V ~~~~~~~~~~~ V V V~ ~. - ~~~~--- -- ~ V V~~~~ ~~~~~~~~~~~ VV ~ V V -~~~~~~~~~~



~~~~ VV

—5—

reports would give the results of consistency cross-checks and analyses
of the Interplay among requirements. Clearly this is most effectively
done if the requirements are represented in a rigorous , unambiguous ,
machine readable format. More on this is presented in a later section.

Figure 3 al so shows a verification of prelimi nary design to re-
quirements. This verification would be supported by reports on the con-

V

sistency of data flows and interfaces within the design. More important ,

however, is that functional effects and characteristics of the designed
system could be inferred from a rigorous , machine readabl e design
representation. In comparing these inferred effects to the rigorous
statement of required effects , a meaningful verification is obtained .

That verification coul d then serve as a basis for a management
decision to proceed with the detailed design activity as planned . Here

too it is possible to verify that the effect of the detailed design
specification achieves the functional capabilities and performance
characteristics promised by the prel iminary design , provided that both
are in rigorous, unambiguo us, machine readabl e format and that analytic
tool s are available. In actuality we view design as a mul tistage hierar-
chical process with verification occurring at each incremental stage.
This is described more fully in a later section of this paper.

Finally, Figure 3 shows a verification of the actual code to
detail design. In this activity the actual code is automatically
scrut inized by automated tools. Reports on the i nternal consistency and
soundness of the code are produced . More important, however, is that
inferences about the effect of the code can be drawn for comparison to
detail design specifications.. This verification is perhaps the most
familiar because numerous tools of this type have been produced in recent
years. Their potential effectiveness has not been fully achieved because
they have not usually been coupl ed with the rigorous design specifications
needed for thorough verification. Nevertheless, these early tools and
teciniques are extremely important to us. They serve as models of the
tools and techniques needed for verification of the earlier phases of
the software life cycle. Further, the weaknesses of these early efforts
serve to underscore the importance of rigor and machine readability at

- V -, ~~~~~~~~~~~~~~~ V. V~~~~~~~~~~V

- —V — ~~~~~~~~~~~~~ ~~~~~~~ V V~ ~~~~~~~~~~~~ ~~~ ~V V ~~~~~~~ ~~ ~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V

-6-

all phases of the life cycl e as the basi s for ver ifi cation , visibility ,

and hence manageability [19—21].

INTEGRATED VERIFICATION METHODOLOGY

In this section an overview of a verification methodology is

presented. This verification methodology has been evolved previously

for appl ication to source code [16 ,20]. We have observed that it seems

applicable , however , to any rigorous algorithmic or combi natorial ex-
pression of a problem or its solution. In this section the methodology

itsel f is sketched; its appl icability to the various life cycle phases is

shown later.

SOURCE J STATIC J SYMBOLIC ,III DYNAM IC1
TEXT 

1
ANALYSIS 1E~~

CuTI0N 1ANALYSISI

FORMA L
VERIFICATION

Figure 4. Integrated verification methodology.

Figure 4 shows the juxtaposition of the four major techniques used

as components of the integrated verification methodology. As shown in
Figure 4, incomi ng source representations (code , design representations ,
or requirements representations) are first scanned by a static analyzer.
Static analyzers are capabl e of examining al gorithmic representations for
inconsistencies and certain errors without requiring actual or simulated
execution. Systems such as the DAVE[20—22] static analysis system have
proven to be useful in this way.

DAVE is capable of inferri ng the nature of data flows both within
and between modules of FORTRAN programs. The reports of these inference
scans are useful documentation, providing visibility to project personnel
and management. Further, instances of inconsistent data flow can be de-

tected and reported as errors. DAVE can also demonstrate the absence of
certain data flow errors such as uninitialized variabl e references and 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V -~~~~~~~~~


n-~ -r ~~~~~~~~~~~~~~~~~~~~~~~ —~
,
~
. V__

~~
-_ . ~~~~ - ~~ --

—7—

mismatched subprogram invocation lists . This also is useful management
information.

Exam i nat ion of the nature of DAVE ’s analys i s shows that the
analysis is actually performed on a graph representation of the source
program. Hence DAVE’s basic analytic capabilities seem equally appl i-
cabl e to graph and algorithmic representations such as those availabl e
during design and requirements. This seems to be a comon characteristic
of most static analysis techniques. Hence static analysis of data flow
and algorithmic consistency is the logical first step in providing visi-
bility and verification at each phase of the software life cycle.

Dynamic analysis lies at the other end of the methodology pictured
in Figure 4. In dynamic analysis explicit inputs to an algorithmic
process spec ification are used to explore the actual functioning of the
process. This provides a different kind of visibility and enables dif-
ferent verification. Whereas static analysis was abl e to ferret general
descriptions of data fl ows out of a general representation , dynamic
analys i s i s abl e precisely to identify improper handling of specific
input scenarios. With dynamic analysis the exact effect of a specified
scenario can be determined. This is invariably the most important kind
of visibility to project management and to a customer. Veri fication can
be derived from this visibility by comparing observed execution effects
to prec ise statements of intent.

Perhaps the most significant work in this area is the PET system
[23,243. The PET system and a prototype PL/1 Automated Ver if ication
System are designed to monitor , respectively, executing FORTRAN and
PL/1 programs for adherence to specified statements of intent . The
statements of intent are to be created by the designers , developers,
and testers , and may employ the full power of the First Order Predicate
Calculus either locally or globally within the program. Hence if the
statements of intent embody a program ’s detailed design , these systems
are capabl e of verifying the correct implementation of functions to
handl e expected input scenarios.

Careful consideration of this technique shows that this dynami c
analysis capability is applicabl e to any algorithmic speci fication that
has flow of control and contains representations of functional

~
V_ ~~~~~~~~~~~~~~~~~~~~~ ~~~

-- ~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~~~~~~~~~ - — --- ——V-~~~~~~~~~~~~
—

.-~~~~~~~~ - - .

-8-

transformations for all modules. Hence dynamic verification is seen

to be an extremely important capability applicable to the verification

of designs and code. The approach can al so be applied to simulated

processes used to model early requirements and analyze their interactions .

Dynamic analysis techniques provide definitive visibility and

verification for specific input data sets and scenarios , but general

visibility can be difficult and expensive to achieve . Static analysis
is capabl e of wide scope, but is less capabl e of specifics and details.

In an important sense the two techniques are nicely complementary , but

an important middl e ground needs to be more fully addressed.

This middle-ground capability , specific detailed visibility and

verification for classes of a lgor i thmic scenarios, is suppl ied by a

relatively new technique known as symbolic execution. Experiments in

symbolic execution of source code have been carried out by Clarke [25],

Howden [26-28] and King [29]. These resul ts have shown that this tech-

nique is capabl e of providing precise visibilit y into the functional

effect of specific paths and classes of paths through a source program.
Clarke and King have also shown that automatic constraint solving and

theorem proving techniques can be coupl ed with symbolic execution to

achieve veri fication. Their work shows that source code can sometimes
be shown to adhere to specific statements of intent not unl ike those em-
ployed by the PET system.

Work to date on symbolic execution shows that this technique is
applicabl e to source code but , is probably better appl ied to designs
and requirements specifications. Symbolic execution is capabl e of
portraying functional effect to whatever level of detail is specified
by the input source text. The experiments on code indicate that too much
detail is present in code. This resul ts in excessively long and cumber-
some expressions of effect and proves to be an obstacle to visibility ,
rather than an aid. Further, the excessive detail complicates automated

V

verification. Higher-level designs and requirements are inherently
freer of detail and thus are typically more amenabl e to symbolic execution.

All of this is excellent justification for placing symbolic ex-
ecution methodologically in between static analysis and dynamic analysis ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ V ~~~~~~~~~~~~~~



- 
-.~~~—m-.---.~~~~

pr~— w-- . — 1flTi V~~~M,_*- - , -

-9-

as shown in Figure 4.

This placement is further supported by observing that essentially
the same statements of intent have been used as the basis for verification
using both symbolic execution and dynamic analysis. Symbolic execution ,
however, has been shown to be effective only in some cases . This suggests
that when verification is desired , symbolic exec ution should be attempted
first because stronger, more general results are possible. Dynamic
analysis might then be employed to verify specific cases for which sym- V

bolic execution verification attempts failed .

Experiments have shown that for actual source code , dynamic ana lys is V

.

is likely to be the more successful veri fication technique. In dealing. with
designs , however, it appears that the loss of detail will make symbolic

execution more effecti ve and dynamic analysis less effective. This shift
in effectiveness should become more pronounced at higher level s øf design .
Finally in veri fying requirements , it appears that symbolic execution shows
much promise. It is important to note that methodologically this implies

that much important definitive verification will be achievable solely with
symbolic execution early in the program development cycle. Accordingly,
detailed verification emphasis should shift gradually to dynamic analysis
as the coding phase is approached and begun.

Formal verification is the final technique contained in the inte-
grated verification methodology . Formal verification is best viewed as
the logical outgrowth of symbolic execution (although historically the
reverse has been true). In formal verification the compl ete definitive
functional effect of an algorithmic specification is determined and com-
pared to the complete definitive statement of the program ’s intent. The

— determination of effect is made by symbolically executing every algorithmic
path. This is the sense in which formal verification can be viewed as an
outgrowth of symbolic execution , while the distinction between the two is
based upon thoroughness and completeness.

Thus, as was the case for symbolic execution, the expected effec-
tiveness and practicality of formal verification is expected to be greatest
for higher-level designs. Formal verification of actual code is not e/x-
pected to be effecti ve at al l beca use of the inundati ng effect of



----- —~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 

— -~~-~
_ —~~~~~~~~~~

-—-- —v
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-.

-1 0-

excessive detail. Interestingly, experience has shown this to be the

case. Most researchers advocate the application of formal verification

to high—level algori thmic outl ines [30-32] . Formal verifications of

V 
actual code, on the other hand, exhibit graphically the numbing effect
of the detail contained in code [30,31]. Thus, formal verification is
incorporated into our proposed methodology as an option that is expected
to be most effectively exerci sable only at the higher l evels of require-
nients and design.

ARCHiTECTURE OF A PROPOSED IMPLEMENTATION

The preceding section has described a methodology capabl e of
providi ng for visibility and verification at each phase of the software

development cycle. It was shown earl ier that these are critical cap-
abilities needed in order to manage software development. It was shown,
moreover , that visibility and verification are equally as necessary in
the management of a successful software maintenance activity.

In this section we present the general outl ines of an architecture
for a system capable of supporting the development and maintenance of
software . The architecture dictates an integrated visibility and
verification functional capability appl icable at all stages of the
development and maintenance cycles. Thus it supplies the informational
basis for effective project management. It also incorporates editing ,
graphics, and file management capabilities necessary for conveniently
accessing data and impl ementing decisions .

The heart of the proposed system is a data base containing all
of the information needed for making and implementing management decisions
about a given program. Thus the data base Is to contain source code,
object code, documentation, support l ibraries, and project utilities . In
this respect it helps fulfill the librarian functions of the chief pro-
graniner team concept [33).

In addition, the requirements and design specifications for the
program must also reside In the data base. This refl ects the philosophy
that a program is much more than code that executes on a computer . A
program is a systematic orderly plan for solvi ng a problem. As such it 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— V~~~ . V  ~V V -



— ~~~~~__ V - ~~~~~~~~~~~~~~~~~~~~~~ 
,
~~

— - 
~— - -  -.

~~~~~
---V --

~~
--- . -

-11- 1
must contain a clear expression of the nature of the problem as wel l as

the solution to the probl em. Hence the program requirements and all
availabl e level s of design are integral components of the program and
must reside in the program data base.

If all of these essential program components are pl aced in a
centrally accessibl e data base, project personnel and management then
have access to all of those materials wi thout which they cannot effec-
tively do their jobs. The architecture dictates user interface and in-
ternal structuring to facilitate this access as wel l as to restrict
al teration of critical components. In this way the data base management

system serves as an extension and impl ementation of the project config-
uration management scheme. The data base al so refl ects our stress on
management through visibility and verification , as it contains the re-
ports and analyses produced by the components of the verification meth-
odology. The data base management system must be designed to facilitate

management access to these reports because the reports most effecti vely V

convey the project status.

The components of the integrated verification methodology might
be viewed as part of the data base management system. They must be
capabl e of being invoked to produce analytical reports on appropriate
source text within the data base. They must then leave their reports

V wi thin the data base al so . By simplifying and placing the execution of
ana lytic capabil i t ies at the disposal of project management, a means
is provided for gaining visibility when it is needed and in a variety
of powerful ways. This provides a strong basis for decision making .
As al ready noted, moreover such data base manipulation capabilities
provide a means for Impl ementing certain decisions (e.g., reject or in-
corporate modules , retest or elaboratively continue testing other
modules). Here too we see that the data base management system im-
plements many important configuration management and control functions.

Figure 5 is a diagram of the architecture as j ust descri bed. It
Is Important to note that the verification processes pictured here are
exactly those shown In Figure 3. Figure 5 shows , however , that all
are supported by the same core of analytic capabilities represented

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - -~~~~~~~~~ - - —V~~~~ -

&

USER
_ _ _ _

PRELIMINARY INCREMENTA L V

REQUIREMENTS DESIGN DETAILED DESIGN CODE
VERIFICATION VERIFICATION VERIFICATION VERIFICATION

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PROJECT PERSONNEL INTEGRATED
AND M?AGERS VERIFICATI ON

kDITORS J~~ V

FILE ~ 
PROGRAM DATA BASE

HANDLER~ 1SOURCE TEXT DOCUMENTATION REPORTS ANALYSES
I /

REPORT
WRITERS

Figure 5. System architecture.

in Figure 4. This is possible only If the requirements and design are
captured and stored In rigorous unambiguous formats; if so, then syntax
analyzers for each format (as we’l as for all code languages) could be
created. These would then b~ used as front ends to produce standard

representations for analysis by the modules of the Integrated veri fica-
tion methodology.

Rigorous requirements and design notations are cu rrently recei v ing

consIderable attention [34-37]; thus these assumptions seem quite j ustified.
Interestingly enough, early experience with them indicate that the discipl ine
of representing requirements and design rigorously is highly beneficial
In Itsel f [24,37]. The philosophy of compelling this is thus deemed an
advantage rather than an obstacle.

- ~~~~~~~~~~~~~~~ -
~~~~~~~~~~~ -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~


__ -~~~ V~~~~~~ V V ‘ W ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ V V_ VV~~~~~~~ _ V~~~, V V , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~ ~~~~~~~ V ~~- --‘ ~~~~~~~~~ ~~~~~~~
-.- -

~~~~‘~~~~
•

V -13—

V ACKNOWLEDGMENTS

The ideas presented here were stimulated and shaped by conversations
with Ted Biggerstàff, Lori Clarke, John Darringer, Lloyd Fosdick , Ed

V 
Foudriat, Bob Glass , Linda Hammo nd, Bill Howden, Dave Kas ik, Sharon Lamb,

Vern Leck , H. F. Lee, Larry Peters , Bill Riddle, Dick Robi nson, Bill
Rzepka, Ed Senn, Mark Smith , Terry Straeter, Dick Taylor , Armand V ito,
and Roger Weber. -

V - 

REFERENCES

1. J. R. Brown, Getting Better Software Cheaper and Quicker , In Practical
Strategies for DeveloDlng Lar~~ Software Systems, Addi son-Wesl ey,
Reading, Massac husetts, 19Th, pp. 131-154, 19.

2. Proceedings 1975 International Conference on Reliabl e Software,
IEEE Cat. No. 75 CHO 940-7CSR, Los Angeles , 1975.

3. Proceedings Second International Conference on Softwa re Engineeri ng, V

IEEE Cat. No. 76CH l125-4C, Sai Francisco, l~76.
4. Proceedings Third International Conference on Software Engineeri ng,

Atlanta , 1978. V

5. IEEE Transactions on Software Engineeri ng, SE Series. V

6. J. R. Brown, A. J. DeSal vio, 0. E. Heine, and J. G. Purdy , Automated
Software Quality Assw’ance , in Program Test Methods (W. C. Hetzel ,ed. )
Prentice-Hal l, Englewood Cl iffs , N. J., 1973, pp. 181-203.

7. B. W. Boehm, The High Cost of Software, In Practical Strategies for
Deve1opin~ Large Software SXstems (E. Horowi tz , ed.), Add1son-We~Tiy,
Reading, Massac husetts , 1975.

8. J. R. Brown, Improving Quality and Reducing Cost of Aeronautical
Systems Software Through Use of Tools, in Proceedings of Air Force
Aeronautical Systems Software Workshop, AprIl 1974 .

9. R. 0. Williams , Managing the Development of Reliable Software, in
Proceedings of the International Conference on Reliabl e Software.
April 197~, ~~~18. — _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _

10. R. K. E. Black , Effects of Modern Programming Practices on Softwa re
Development Costs, in Proceedings of Fall Compcon 17, September 1977,
pp. 250-253.

11. J. R. Brown, Programming Practices for Increased Softwa re Quality,
In Software gual i~y Management, Petrocelli Books , New York CIty, 1978.

12. W. E. Carl son, Software Research in the Department of Defense ,
Proceedings Second International Conference on Software Engineering .
IEEE Cat. No. 76 CH 1125—4c , pp. 379—383.

13. B. W . Boehm, Software and Its Impact: A Quantitative Assessment ,
Datamatlon, May 1973. pp. 48-59.

L V V V V  ~~~~~~~~~~~~~~~~~ — - S - V .~~~~~ , ~ V V V ~~~~~ ~~~~~~ ~~~~~~~~~~~ V — ——-



T_ ~~~~._Vr V, V ,VVVV. V VV
~~

_ V V ~~~~~~~~ __~•_ • _ V ~~~~~~~~~~~~~~~~~~~~~~~~ — - 
VV II~~~~

V.

-14-

14. D. S. Al berts , The EconQmics of Software Qual ity Assurance , AFIPS
Conference Proceeding 45, 433-442 (1976).

15. J. S. Gansler, The DOD Defense Systems Software Management Program--
Current Status , Software Management Conference Proceedings, Winter
1977-1978 Series A1AA-DPMA, pp. 5— 11.

16. L. J. Osterweil , A Proposal for an Integrated Testing System for
Computer Programs , University of Colorado Department of Computer
Science Technical Report No. CU—CS-093-76, Augus t 1976.

17. J. R. Brown and R. H. Hoffman, Automating Software Developement: A
Survey of Techniques and Automated Tool s , TRW -SS-72-03 , May 1972.

18. 0. J. Reifer, Automated Aids for Reliabl e Software, Proceed ings of
the International Conference on Reliabl e Software, April 1975,
pp. 131—142.

19. 3. R. Brown, Why Tool s? , Proceedi ngs of Computer Sc ience and Stati stics:
Eighth Annual Sympos ium on the Interface, February 1975 , pp. 310-312.

20. L. J. Osterweil and L. D. Fosdick , Some Experience with DAVE--A FORTRAN 
V

Program Analyzer , AFIPS Conference Proceedings 45, 909—916(1976). V

21. L. J. Osterweil , A Methodology for Testing Computer Programs , A1AA
Conference on Computers in Aerospace, Los Angeles , November 1977,
pp. 52-62.

22. L. J. Osterweil and L. 0. Fosdick , DAVE--A Validation Error Detection
and Documentation System for FORTRAN Programs , Software Practice and
Experience 6, 473- 486 (September 1976).

23. L. G. Stucki and G. L. Foshee , New Assertion Concepts for Sel f-Metric
Software Val idation, Proceedings 1975 International Conference on
Reliabl e Software. IEEE tat. No. 75-CHO9 40-7CSR , 1975, pp. 59—71

24. L. G. Stucki , The Use of Dynamic Assertions to Improve Software
Quality , Ph.D. Dissertation, School of Engineering, University of
California at Los Angel es , June 1976.

25. L. A. Clarke , A System to Generate Test Data and Symbolically Execute
Programs , IEEE Transactions on Software Engineering SE-2. 215-222
(September1976).

26. W. E. Howden, Experiments with a Symbolic Evaluation System, AFIPS
Conference Proceedings 45, 899-908 (1976).

27. W. E. Howden, DISSECT--A Symbolic Eval uation and Program Testing
System, IEEE Transactions on Software Engineering SE-4, 70-73
(January 1978) .

28. W. E. Howden and L. G. Stucki , Fi nal Report Methodology for the
Effective Test Case Selection , Phase II. McDonnel l Douglas Technical
Report MDC G5800, April 1975.

29. J. C. Ki ng, Symbolic Execution and Program Testing , CACM 19, 385-394
(July 1976).

30. 0. I. Good, R. 1. London, and W. W. Bledsoe , An Interactive Program
Verification System, 1975 InternatIonal Conference on Reliabl e Software.
IEEE Cat. No. 75—CHO94O-7CSR, 1 975 , pp. 482-492. — _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _



—V — ~V~r_
V
~~ ~~~~~~~~~~~~~~~ V__~~__  ___ _fl VV-V ~~~~~~~~ V —

I
-15-

- 31. 8. Elspas , K. N. Levitt , R. J. Waldinger , and A. Waksma n, An Assessment
- of Techniques for Provi ng Program Correctness ACM Computing Survey,~- 4, 97-147 (June 1972).

32. R. L. London, A View of Program Verification, 1975 International
Conference on Reliable Software, IEEE Cat. No. 75-CH0940-7CSR, 1975,

- pp. 534-545.
33. F. 1. Baker , Chief Programmer Team Management of Production Programming ,

V 
— IBM Systems Journal 11 , 56-73 (1972).

V 34. M. W. Al ford, A Requirements Engineering Methodology for Real -Time V

Processing Requirements, IEEE Transactions on Software Engineering
- 

V SE-3, 60-69 (January 1977).
35. 0. T. Ross and K. E. Schoman, Jr., Structured Analysis for Require-

- V ments Definition , IEEE Transactions on Software Engineering SE-3 ,
6-15 (January 1977) .

36. S. A. Stephens and L. L. Tripp, A Require~~ ts Expression and Val ida-
tion Tool, Proceeding~ Thi rd Internat onal Conference on Software
Engineeri ng, Atl anta, M~y 1978.

37. J. R. Brown, Functional Programming Final Technical Report , TRW
Technical Report No. 2958O—600l-RIJ-0O, July 1977.Li[


